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ABSTRACT
The complex variable boundary element method or CVBEM is a numerical technique that can provide 
solutions to potential value problems in two or more dimensions by the use of an approximation func-
tion that is derived from the Cauchy integral equation in complex analysis. Given the potential values 
(i.e. a Dirichlet problem) along the boundary, the typical problem is to use the potential function to 
solve the governing Laplace equation. In this approach, it is not necessary to know the streamline 
values on the boundary. The modeling approach can be extended to problems where the streamline 
function is needed because there are known streamline values along the problem boundary (i.e. a mixed 
boundary value problem). Two common problems that have such conditions are insulation on a bound-
ary and fluid flow around a solid obstacle. In this paper, five advances in the CVBEM are made with 
respect to the modeling of the mixed boundary value problem; namely (1) the use of Mathematica and 
Matlab in tandem to calculate and plot the flow net of a boundary value problem. (2) The magnitude 
of the size of the problem domain is extended. (3) The modeling results include direct computation and 
development of a flow net. (4) The graphical displays of the total flownet are developed simultaneously. 
And (5) the nodal point location as an additional degree of freedom in the CVBEM modeling approach 
is extended to mixed boundaries. A demonstration problem of fluid flow is included to illustrate the 
flownet development capability.
Keywords: approximate boundary, collocation, complex variable boundary element method (CVBEM), 
complex variables, mixed boundary conditions, Mathematica, Matlab, MATLink

1 INTRODUCTION
Several new advances in the complex variable boundary element method ‘CVBEM’ are pre-
sented. (1) The CVBEM is applied with the use of computer programs Mathematica, Matlab 
and Matlink. These three programs are integrated together to utilize the matrix-solving capa-
bility of Matlab with the graphics capability of Mathematica, among other features. 
Mathematica and Matlab are linked using procedure calls based upon Matlink’s Application 
Programming Interface or API. The CVBEM is then extended to solving mixed boundary 
value problems. Previously, this software capability was focused upon solving Dirichlet 
problems. For the CVBEM, the mixed boundary value problem is handled by specifying 
values of the potential function on the problem boundary where Dirichlet-type boundary 
conditions are known. Then, the values of the complex stream function are specified on the 
boundary where flux-type or conjugate-type boundary conditions are known. This ability of 
handling both types of boundary conditions by direct specification of conjugate function 
values appears to be unique to the CVBEM. (2) The magnitude of the size of the problem 
domain, as far as the number of nodes used in the model, is extended to several hundreds or 
even in the thousands. Previously, the number of nodes reported in the literature has been 
approximately one hundred or less. By harnessing the power of these three computer pro-
grams, the size of the mixed boundary value problem that can be analyzed using the CVBEM 
has been greatly extended. (3) The CVBEM modeling results include direct computation of 
a flownet for the mixed boundary value problem. Other numerical modeling techniques use 



270 A. N. Johnson et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 3, No. 3 (2015)

auxiliary computational schemes to estimate the conjugate function results or flux estimates 
using the estimates for the potential function derived in the model effort. The CVBEM devel-
ops both the potential and the conjugate stream function directly in tandem and simultaneously. 
(4) The graphical displays of the total flownet for both the potential and stream functions are 
developed simultaneously by Mathematica from the developed CVBEM approximation 
function. The flownet plots not only cover the problem domain and boundary but additionally 
cover the space exterior of the problem domain. This ability to develop the CVBEM approx-
imation and then visualize the flownet both interior and exterior of the problem domain and 
boundary provides further insight into the model user in improving the CVBEM approxima-
tion fit to problem boundary conditions. This can be done by the addition of nodes (i.e. 
adding more CVBEM basis functions) or moving nodes to different locations on the problem 
boundary or to locations exterior of the problem boundary and domain. (5) The ability to 
include the nodal point locations as additional degrees of freedom in the CVBEM modeling 
approach is extended to mixed boundary value problems.

2 COMPLEX VARIABLE BOUNDARY ELEMENT METHOD (CVBEM)
The CVBEM is a numerical method, which solves partial differential equations of the  Laplace 
and Poisson type. Since the model’s conception in 1984 [1,2], the CVBEM has been exam-
ined in numerous publications including Hromadka and Lai [3], Hromadka and Whitley [4], 
and most recently Hromadka and Whitley [5]. The CVBEM was also extended to three or 
more dimensions through the use of linear combinations of the two-dimensional model [6]. 
It has been the subject of many research papers and engineering applications such as heat 
transfer, stress–strain, fluid dynamics and groundwater flow.

The CVBEM has an advantage over some other numerical methods such as the finite ele-
ment method (FEM) or finite difference methods (FDM) because the CVBEM does not 
require modeling nodal points to be defined on the problem boundary or in the interior of the 
problem domain. Both the FEM and FDM techniques require nodal points to be defined on 
the problem boundary and within the problem domain. First, the CVBEM also solves the 
governing PDE, while FEM and FDM are only able to develop approximations. Secondly, the 
CVBEM provides an approximation function that is continuous throughout the problem 
domain where the other methods do not. Thirdly, the CVBEM approximation function exists 
outside the problem domain, whereas the FEM and FDM approximations do not. Further-
more, the CVBEM is more useful than analytical methods such as a Fourier series expansion 
because it is not limited to a specific domain.

Recent research by Johnson et al. [7] has demonstrated that relatively large instances (1000 
or more nodes) of the Dirichlet problem modeled using the CVBEM can be quickly solved 
using Matlab. With the Dirichlet problem, it is only necessary to know the potentials on the 
boundary because there are no flux boundary conditions. This paper extends the CVBEM to 
solve mixed boundary value problems. The paper also demonstrates the recent advancement 
of using CVBEM nodal points specified exterior of the problem domain (and not on the prob-
lem boundary) showing that nodal point positioning (both on the problem boundary and 
exterior of the problem domain) is an additional set of modeling degrees of freedom available 
for approximation optimization.

3 MATHEMATICAL MODEL
Application of the CVBEM begins with a simply connected domain in the two-dimensional 
complex plane, Ω, which is bounded by a simple closed contour, Γ. A graphical depiction of 
this domain can be seen in Fig. 1.
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Along the boundary Γ, or exterior to the problem domain union boundary, there are defined 
n nodal points. For development purposes, the n nodes are assumed defined on Γ. Next, the 
simple closed contour, Γ, is divided into n boundary elements, Γj−1,…, Γj, …,Γn. For each 
boundary element, an interpolating polynomial will be used to create a piecewise continuous 
global interpolation function. In Fig. 1, the boundary, Γ, is ‘severed’ at s = 0 and in the posi-
tive direction spans until s = L, the arc length of Γ. In Fig. 2, the boundary is ‘flattened’ and 
the piecewise function is presented.

The piecewise function that is graphed in Fig. 2 is seen in the equation form,

 

 (1)

Note that the sum of respective basis function terms is continuous on the boundary Γ for 
all ζ ∈ Γ. This basis function will be used to define the Global Trial function 

 
 (2)

Figure 1: CVBEM [7].

Figure 2: Linear interpolation basis functions, Nj (ζ ).
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where the Global Trial function is defined to be the sum of all nodal basis functions multi-
plied by a corresponding complex coefficient, w̄j , where w̄j is the nodal point j value of the 
function being approximated.

The Global Trial function is substituted into the Cauchy integral for mula (eqn (3)). The 
integration of this formula with our analytic Global Trial function (in the simply connected 
two-dimensional complex domain, Ω) results in the CVBEM approximation function, ŵ  (z0):

 

 (3)

Because the Global Trial function is continuous, ŵ (z0) is analytic in Ω, allowing ŵ (z0) to 
be used as an approximation function defined almost everywhere (‘ae’) inside Ω as well as 
exterior to Ω ae. This characteristic separates the CVBEM from other approximations such 
as FEM and FDM. When solved, the CVBEM approximating integral becomes an approxi-
mating function of the form

 
 (4)

with

  

where aj and bj are real constants to be determined, and

  

where a0, b0, a−1 and b−1 are also real constants to be determined. In eqn (4), the first terms 
are linear complex polynomials, which are added to a sum of products of linear complex 
polynomials multiplied by the nodal point complex logarithm. Since complex logarithms are 
used, it is necessary to expand on the definition of nodal point branch cuts.

A branch cut is a curve in the complex plane across which an analytic function is discon-
tinuous. Since the approximation function ŵ (z) can contain n complex logarithmic terms 
corresponding to n nodal points modeling the problem domain boundary, it is necessary to 
ensure that the discontinuities associated with each nodal point is rotated away from the 
domain under observation. Figure 3 shows the rotation of the branch cuts away from the 
problem domain, Ω.

4 CVBEM EXPANSION AND NODAL EQUATIONS
The first step in applying the CVBEM is to resolve the CVBEM approximation function, 
ŵ (z), into its real and imaginary parts, f̂ (z) and ψ̂ (z). The approximating function, eqn (4), is 
converted to polar coordinates. Then, the construct (z − zj ) = Rj e

iθj is used to define the dis-
tance between any point z and each node j, located at zj ,

 
 (5)

Using Euler’s formula of eiq = (cos q + i sin q), the CVBEM approximation function becomes
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 (6)

Further evaluation gives

 
 (7)

Combining eqns (6) and (7) gives

 

 (8)

Collecting real and imaginary terms yields

 

 (9)

Now the approximation function is separated into real, f̂, and imaginary, ψ̂, parts:

  (10)

where the potential functions, or real parts, are given by

  (11)

for

Figure 3: Branch cuts and polar coordinate development.
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 (12)

the stream functions, or imaginary parts, are given by

 
 (13)

for

 

 (14)

Recall that lnj includes the effect of the nodal point logarithmic branch cut rotations.

5 MATRIX FORMULATION
After the real and imaginary parts of the CVBEM approximation equation have been devel-
oped, the next step is to find the constants, an, and bn, in the f̂ and ψ̂ functions. Currently, there 
are two methods commonly used to solve for the constants: collocation and least-squares 
minimization. This research uses the method of collocation to solve for the constants. In this 
method, the known potential and streamline values will be used to set up a system of equa-
tions to solve for the unknown constants. In past research, collocation was used to solve the 
real part of the CVBEM and required 2n + 3 collocation points, where n is the number of 
nodes. The need for 2n + 3 collocation points arises from eqns (11) and (13). For every node, 
there is an aj and bj term in the summation and two additional a terms and b terms, but one b 
term is zero due to eqns (11) and (13).

Example 5.1. A single node CVBEM model for singleton node k.
Consider the real portion of the CVBEM with one node for collocation point k. The resulting 
equation from eqn (11) is:

  (15)

where

 
 (16)

Evaluate the above with the five necessary potential collocation points on the problem bound-
ary. This will result in five linearly independent equations for five collocation points on Γ,

 

. (17)
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The matrix system to be solved is Ax = b, where A is a coefficient matrix and b are the known 
potential values at each of the collocation points:

 

. (18)

Once the system h as been configured, substitute the coordinates of the collocation points into 
the second and third column of the coefficient matrix. It is also necessary to calculate the 
radius and angle of the collocation points from the singleton node (see Fig. 4). The final step 
is to solve the matrix system. Once these values are known, they can be substituted back into 
the original equation for f̂ (z), eqn (15). The f̂  function can now be used to approximate all 
the potential values within the problem domain.

Collocation can also be used in the same way to solve for the streamline equation, ψ̂ (z). 
The most significant change is that instead of solving for a0, one must solve for b0.

6 CVBEM MODELING OF MIXED BOUNDARY VALUE PROBLEM USING 
COMPUTER SOFTWARE: IDEAL FLUID FLOW MAKING A 90° BEND

In order to demonstrate the advances presented in this paper, a simple ideal fluid flow prob-
lem of flow in a 90° bend is considered (that has an exact solution available for comparison 
purposes). Although much more complex mixed boundary value problems may obviously be 
handled with the presented approach, only a demonstration problem is presented.

An application of the CVBEM that uses computer programs Matlab, Mathematica and 
MATLink to model mixed boundary conditions of an ideal fluid flowing around a 90° bend is 
presented. The geometry of this problem begins with a unit square anchored at the origin. The 
sides extending from the origin to (1, 0) and (0, 1) are defined by the streamline condition, 
and the value along these two sides is defined as reference value zero. The constant value of 
zero means that there is no flux, or fluid flowing, across the boundary. By the definition of 
PDE mixed boundary conditions, derivatives normal to the function w(z) would be zero.

The sides from (1, 0) to (1, 1) and (1, 1) to (0, 1) are defined by the potential boundary 
conditions. On these two sides, the value at each point is set equal to the equation x2 − y2. For 

Figure 4: Solving for R and q in eqn (16).
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example, the potential value at the evaluation point (1, 0.5) is equal to the value of 1.25. The 
approximation function, w(z), can be solved for the selected number of nodes and rotations 
of the various nodal branch cuts. In this problem, the number of nodes has been defined to 
equal forty. These forty nodes were placed in a circle around the center of the domain with a 
radius of r = 1. The branch cuts are rotated 180° from the angle of the node from the point 
(0.5, 0.5). This rotation will ensure that none of the branch cuts will cut through the problem 
domain. For the 40 nodes in this problem, there will be a corresponding 2n + 4 collocation 

Figure 5: Ideal fluid flow around a 90° turn.

Figure 6: Zoom of boundary of ideal fluid flow around a 90° turn.
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points, or 84. Further, there are 42 potential value points, 21 on the right and 21 on the top of 
the problem boundary. Also, there are 42 streamline value points, 21 on the left and 21 on the 
bottom of the problem boundary. Because there are 40 nodes and 84 collocation points, there 
will be a system of 84 equations solving for 84 coefficients. Matlab was able to handle this 
calculation easily. A Mathematica graphical contour plot of streamlines and potentials is 
shown in Fig. 5. Figure 6 is a zoom of the boundary only. Nodal points are outside the zoom 
window.

7 CONCLUSIONS
The CVBEM is a powerful numeric technique useful in solving the Laplace and Poisson 
equations. In this paper, several new advances in the CVBEM were demonstrated. With 
Matlink, the matrix-solving capability of Matlab and the graphics capability of Mathemat-
ica were used to extend the number of nodes used to model the CVBEM mixed boundary 
value problem. Previously, this software capability was focused upon solving Dirichlet 
problems. The ability to handling both types of boundary conditions by direct specification 
of conjugate function values was demonstrated. Further the magnitude of the size of the 
problem domain, as far as the number of nodes used in the model is scalable. Previously, the 
number of nodes reported in the literature has been approximately one hundred or less. This 
implementation can handle thousands of nodes. Consequently, the size of the mixed bound-
ary value problem that can be analyzed has been greatly extended. The graphical displays of 
the total flownet for both the potential and stream functions were developed simultaneously 
by Mathematica from the developed CVBEM approximation function as seen in both the 
examples. The flownet plots not only cover the problem domain and boundary but addition-
ally cover the space exterior of the problem domain. This analysis has demonstrated the 
ability to develop the CVBEM approximation and then visualize the flownet both interior 
and exterior of the problem domain and boundary, and provides further insight into the 
modeler for deeper analysis. Finally, the nodal point locations were exploited as additional 
degrees of freedom in the CVBEM modeling of the mixed boundary value problems. Con-
sequently, the approximation effort has not only the nodal point coefficients (of the CVBEM 
basis functions) as degrees of freedom in the approximation optimization, but also nodal 
point locations both on the problem boundary and also exterior of the problem domain and 
boundary. This extension of the CVBEM by including node location as a degree of freedom 
substantially increases the CVBEM modeling power in developing optimized approxima-
tions to mixed boundary value problems.
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